TI-83/84 Guide for Introductory Statistics

Includes step-by-step instructions, practice exercises, and links to video tutorials. Covers all calculator features needed for $A P$ ® $®$ Statistics Exam
Instructions excerpted from Advanced High School Statistics, available for FREE at openintro.org

Leah Dorazio
San Francisco University High School
leah@openintro.org

August 7, 2016

Copyright © 2016 OpenIntro, Inc. First Edition.
Updated: August 7, 2016.
This guide is available under a Creative Commons license. Visit openintro.org for a free PDF, to download the source files, or for more information about the license.
$\mathrm{AP}(\AA)$ is a trademark registered and owned by the College Board, which was not involved in the production of, and does not endorse, this product.

Contents

Summarizing data 5
Entering data 5
Calculating summary statistics 5
Drawing a box plot 6
What to do if you cannot find L1 or another list 6
Practice exercises 7
Probability 8
Computing the binomial coefficient 8
Computing the binomial formula 9
Computing a cumulative binomial probability 9
Practice exercises 10
Distribution of random variables 11
Finding area under the normal curve 11
Find a Z-score that corresponds to a percentile 12
Practice exercises 13
Inference for categorical data 14
1 -proportion z-interval and z-test 14
Practice exercises 15
2 -proportion z-interval and z-test 16
Practice exercises 17
Finding area unders the Chi-square curve 18
Chi-square goodness of fit test 18
Chi-square test for two-way tables 19
Practice exercises 20
Inference for numerical data 21
1 -sample t-test and t-interval 21
Practice exercises 22
Matched pairs t-test and t-interval 23
Practice exercises 24
2 -sample t-test and t-interval 25
Practice exercises 26
Introduction to linear regression 27
Finding b_{0}, b_{1}, R^{2}, and r for a linear model 27
What to do if r^{2} and r do not show up on a TI-83/84 28
What to do if a TI-83/84 returns: ERR: DIM MISMATCH 28
Practice exercises 28
Linear regression t-test and t-interval 29

Summarizing data

Entering data

은 TI-83/84: Entering data
The first step in summarizing data or making a graph is to enter the data set into a list. Use STAT, Edit.

1. Press STAT.
2. Choose 1 :Edit.
3. Enter data into L1 or another list.

Calculating summary statistics

${ }^{\circ}{ }^{\circ}$ TI-84: Calculating Summary Statistics

Use the STAT, CALC, 1-Var Stats command to find summary statistics such as mean, standard deviation, and quartiles.

1. Enter the data as described previously.
2. Press STAT.
3. Right arrow to CALC.
4. Choose 1:1-Var Stats.
5. Enter L1 (i.e. 2ND 1) for List. If the data is in a list other than L1, type the name of that list.
6. Leave FreqList blank.
7. Choose Calculate and hit ENTER.

TI-83: Do steps 1-4, then type L1 (i.e. 2nd 1) or the list's name and hit ENTER.

Calculating the summary statistics will return the following information. It will be necessary to hit the down arrow to see all of the summary statistics.

$\overline{\mathrm{x}}$	Mean	minX	Minimum
$\Sigma \mathrm{x}$	Sum of all the data values	Q_{1}	First quartile
$\Sigma \mathrm{x}^{2}$	Sum of all the squared data values	Med	Median
$\sigma \mathrm{x}$	Population standard deviation	maxX	Maximum
n	Sample size or \# of data points		

Drawing a box plot

은 TI-83/84: Drawing a box plot

1. Enter the data to be graphed as described previously.
2. Hit $2 \mathrm{ND} \mathrm{Y}=$ (i.e. STAT PLOT).
3. Hit ENTER (to choose the first plot).
4. Hit Enter to choose ON.
5. Down arrow and then right arrow three times to select box plot with outliers.
6. Down arrow again and make Xlist: L1 and Freq: 1.
7. Choose ZOOM and then 9 :ZoomStat to get a good viewing window.

What to do if you cannot find L1 or another list

TI-83/84: What to do if you cannot find L1 or another list
Restore lists L1-L6 using the following steps:

1. Press Stat.
2. Choose 5:SetUpEditor.
3. Hit Enter.

Practice exercises

Guided Practice 0.1 Enter the following 10 data points into the first list on a calculator: $5,8,1,19,3,1,11,18,20,5$. Find the summary statistics and make a box plot of the data. The summary statistics should be $\overline{\mathrm{x}}=9.1, \mathrm{Sx}=7.475, \mathrm{Q} 1=3$, etc. The box plot should be as follows.

Probability

Computing the binomial coefficient

$\stackrel{\circ}{\square}$ TI-83/84: Computing the binomial coefficient, $\binom{n}{k}$
Use MATH, PRB, nCr to evaluate n choose r. Here r and k are different letters for the same quantity.

1. Type the value of n.
2. Select MATH.
3. Right arrow to PRB.
4. Choose 3:nCr.
5. Type the value of k .
6. Hit Enter.

Example: 5 nCr 3 means 5 choose 3.

Computing the binomial formula

TI-84: Computing the binomial formula, $P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ Use 2ND VARS, binompdf to evaluate the probability of exactly k occurrences out of n independent trials of an event with probability p.

1. Select 2ND VARS (i.e. DISTR)
2. Choose A: binompdf (use the down arrow).
3. Let trials be n.
4. Let p be p
5. Let x value be k.
6. Select Paste and hit ENTER.

TI-83: Do steps 1-2, then enter n, p, and k separated by commas: binompdf ($\mathrm{n}, \mathrm{p}, \mathrm{k}$). Then hit ENTER.

Computing a cumulative binomial probability

○○. TI-84: Computing $P(X \leq k)=\binom{n}{0} p^{0}(1-p)^{n-0}+\ldots+\binom{n}{k} p^{k}(1-p)^{n-k}$
Use 2ND VARS, binomcdf to evaluate the cumulative probability of at most k occurrences out of n independent trials of an event with probability p.

1. Select 2ND VARS (i.e. DISTR)
2. Choose B:binomcdf (use the down arrow).
3. Let trials be n.
4. Let p be p
5. Let x value be k.
6. Select Paste and hit ENTER.

TI-83: Do steps 1-2, then enter the values for n, p, and k separated by commas as follows: binomcdf (n, p, k). Then hit ENTER.

Practice exercises

Guided Practice 0.2 Find the number of ways of arranging 3 blue marbles and 2 red marbles. ${ }^{1}$Guided Practice 0.3 There are 13 marbles in a bag. 4 are blue and 9 are red. Randomly draw 5 marbles with replacement. Find the probability you get exactly 3 blue marbles. ${ }^{2}$Guided Practice 0.4 There are 13 marbles in a bag. 4 are blue and 9 are red. Randomly draw 5 marbles with replacement. Find the probability you get at most 3 blue marbles (i.e. less than or equal to 3 blue marbles). ${ }^{3}$[^0]
Distribution of random variables

Finding area under the normal curve

Oo TI-84: Finding area under the normal curve
Use 2ND VARS, normalcdf to find an area/proportion/probability to the left or right of a Z-score or between two Z-scores.

1. Choose 2ND VARS (i.e. DISTR).
2. Choose 2:normalcdf.
3. Enter the Z-scores that correspond to the lower (left) and upper (right) bounds.
4. Leave μ as 0 and σ as 1 .
5. Down arrow, choose Paste, and hit ENTER.

TI-83: Do steps 1-2, then enter the lower bound and upper bound separated by a comma, e.g. normalcdf (2, 5), and hit ENTER.

Find a Z-score that corresponds to a percentile

$\stackrel{\circ}{\square}$ TI-84: Find a Z-score that corresponds to a percentile Use 2ND VARS, invNorm to find the Z-score that corresponds to a given percentile.

1. Choose 2ND VARS (i.e. DISTR).
2. Choose 3:invNorm.
3. Let Area be the percentile as a decimal (the area to the left of desired Zscore).
4. Leave μ as 0 and σ as 1 .
5. Down arrow, choose Paste, and hit ENTER.

TI-83: Do steps 1-2, then enter the percentile as a decimal, e.g. invNorm(.40), then hit ENTER.

Practice exercises

Example 0.5 Use a calculator to determine what percentile corresponds to a Zscore of 1.5 .

Always first sketch a graph: ${ }^{4}$

To find an area under the normal curve using a calculator, first identify a lower bound and an upper bound. Theoretically, we want all of the area to the left of 1.5 , so the left endpoint should be $-\infty$. However, the area under the curve is nearly negligible when Z is smaller than -4 , so we will use -5 as the lower bound when not given a lower bound (any other negative number smaller than -5 will also work). Using a lower bound of -5 and an upper bound of 1.5 , we get $P(Z<1.5)=0.933$.Guided Practice 0.6 Find the area under the normal curve to right of $Z=2 .{ }^{5}$
Guided Practice 0.7 Find the area under the normal curve between -1.5 and 1.5. ${ }^{6}$
Example 0.8 Use a calculator to find the Z-score that corresponds to the 40th percentile.

Letting Area be 0.40 , a calculator gives -0.253 . This means that $Z=-0.253$ corresponds to the 40 th percentile, that is, $P(Z<-0.253)=0.40$.

Guided Practice 0.9 Find the Z-score such that 20 percent of the area is to the right of that Z-score. ${ }^{7}$

[^1]
Inference for categorical data

1-proportion z-interval and z-test
$\stackrel{\circ}{\bullet}$ TI-83/84: 1-proportion z-interval
Use STAT, TESTS, 1-PropZInt.

1. Choose STAT.
2. Right arrow to TESTS.
3. Down arrow and choose A:1-PropZInt.
4. Let x be the number of yes's (must be an integer).
5. Let n be the sample size.
6. Let C -Level be the desired confidence level.
7. Choose Calculate and hit ENTER, which returns
(__, __) the confidence interval
$\hat{p} \quad$ the sample proportion
n the sample size

은 TI-83/84: 1-proportion z-test
Use STAT, TESTS, 1-PropZTest.

1. Choose STAT.
2. Right arrow to TESTS.
3. Down arrow and choose 5:1-PropZTest.
4. Let p_{0} be the null or hypothesized value of p.
5. Let x be the number of yes's (must be an integer).
6. Let n be the sample size.
7. Choose $\neq,<$, or $>$ to correspond to H_{A}.
8. Choose Calculate and hit ENTER, which returns
z Z-statistic
p p-value
$\hat{p} \quad$ the sample proportion
n the sample size

Practice exercises

Guided Practice 0.10 A candidate selects a random sample of size $n=500$. The proportion of people in the sample that support her is 52%. Is there significant evidence that greater than 50% of the population support her? Use a calculator to find the p -value for a test with $\mathrm{H}_{A}: p>50 \% .^{8}$Guided Practice 0.11 What percent of Americans believe the Supreme Court is doing a good job? A random sample of $n=976$ yields a sample percent of 44%. Use a calculator to find a 90% confidence interval for the percent of all Americans that believe the Supreme Court is doing a good job. ${ }^{9}$[^2]
2-proportion z-interval and z-test

TI-83/84: 2-proportion z-interval

Use STAT, TESTS, 2-PropZInt.

1. Choose Stat.
2. Right arrow to TESTS.
3. Down arrow and choose B:2-PropZInt.
4. Let x 1 be the number of yes's (must be an integer) in sample 1 and let n 1 be the size of sample 1 .
5. Let $x 2$ be the number of yes's (must be an integer) in sample 2 and let n2 be the size of sample 2 .
6. Let C-Level be the desired confidence level.
7. Choose Calculate and hit ENTER, which returns:
(\quad, \quad) the confidence interval
$\hat{p}_{1} \quad$ sample 1 proportion $\quad n_{1} \quad$ size of sample 1
$\hat{p}_{2} \quad$ sample 2 proportion $\quad n_{2} \quad$ size of sample 2

Use STAT, TESTS, 2-PropZTest.
8. Choose Stat.
9. Right arrow to TESTS.
10. Down arrow and choose 6:2-PropZTest.
11. Let x 1 be the number of yes's (must be an integer) in sample 1 and let n 1 be the size of sample 1 .
12. Let x2 be the number of yes's (must be an integer) in sample 2 and let n2 be the size of sample 2 .
13. Choose $\neq,<$, or $>$ to correspond to H_{A}.
14. Choose Calculate and hit ENTER, which returns:

z	Z-statistic	p	p -value
$\hat{\mathrm{p}}_{1}$	sample 1 proportion	$\hat{\mathrm{p}}$	pooled sample proportion
$\hat{\mathrm{p}}_{2}$	sample 2 proportion		

Practice exercises

Guided Practice 0.12 Use the data in Table 1 and a calculator to find a 95% confidence interval for the difference in proportion of dogs with cancer that have been exposed to 2,4 -D versus not exposed to 2,4 -D. ${ }^{10}$| | cancer | no cancer |
| ---: | ---: | ---: |
| $2,4-\mathrm{D}$ | 191 | 304 |
| no 2,4-D | 300 | 641 |

Table 1: Summary results for cancer in dogs and the use of 2,4 -D by the dog's owner.Guided Practice 0.13 Use the data in Table 1 and a calculator to find the Z-score and p -value for one-sided test with H_{A} : dogs with cancer are more likely to have been exposed to 2,4-D than dogs without cancer, $p_{c}-p_{n}>0 .{ }^{11}$

[^3]
Finding areas under the Chi-square curve

은 TI-84: Finding an upper tail area under the chi-square curve
Use the $X^{2} \mathrm{cdf}$ command to find areas under the chi-square curve.

1. Hit 2ND VARS (i.e. DISTR).
2. Choose $8: X^{2} \mathrm{cdf}$.
3. Enter the lower bound, which is generally the chi-square value.
4. Enter the upper bound. Use a large number, such as 1000 .
5. Enter the degrees of freedom.
6. Choose Paste and hit Enter.

TI-83: Do steps 1-2, then type the lower bound, upper bound, and degrees of freedom separated by commas. e.g. $\mathrm{X}^{2} \mathrm{cdf}(5,1000,3)$, and hit ENTER.

Chi-square goodness of fit test

${ }^{\circ}{ }^{\circ}$. TI-84: Chi-square goodness of fit test
Use STAT, TESTS, X ${ }^{2}$ GOF-Test.

1. Enter the observed counts into list L1 and the expected counts into list L2.
2. Choose Stat.
3. Right arrow to TESTS.
4. Down arrow and choose $\mathrm{D}: \mathrm{X}^{2} \mathrm{GOF}-\mathrm{Te}$ t.
5. Leave Observed: L1 and Expected: L2.
6. Enter the degrees of freedom after df:
7. Choose Calculate and hit ENTER, which returns:
$\mathrm{X}^{2} \quad$ chi-square test statistic
p p-value
df degrees of freedom
TI-83: Unfortunately the TI-83 does not have this test built in. To carry out the test manually, make list L3 $=(\mathrm{L} 1-\mathrm{L} 2)^{2} / \mathrm{L} 2$ and do 1 -Var-Stats on L3. The sum of L3 will correspond to the value of X^{2} for this test.

Chi-square test for two-way tables

은 TI-83/84: Entering data into a two-way table

1. Hit $2 \mathrm{ND} \mathrm{x}^{-1}$ (i.e. MATRIX).
2. Right arrow to EDIT.
3. Hit 1 or ENTER to select matrix A.
4. Enter the dimensions by typing \#rows, ENTER, \#columns, ENTER.
5. Enter the data from the two-way table.

은 TI-83/84: Chi-square test of homogeneity and independence

 Use STAT, TESTS, X^{2}-Test.1. First enter two-way table data as described in the previous box.
2. Choose Stat.
3. Right arrow to TESTS.
4. Down arrow and choose $C: X^{2}-$ Test.
5. Down arrow, choose Calculate, and hit ENTER, which returns
X^{2} chi-square test statistic
p p-value
df degrees of freedom

TI-83/84: Finding the expected counts

1. First enter two-way table data as described previously.
2. Carry out the chi-square test of homogeneity or independence as described in previous box.
3. Hit $2 \mathrm{ND} \mathrm{x}^{-1}$ (i.e. MATRIX).
4. Right arrow to EDIT.
5. Hit 2 to see matrix B.

This matrix contains the expected counts.

Practice exercises

Guided Practice 0.14 Use a calculator to find the area to right of 5.1 for a chisquare distribution with 5 degrees of freedom, i.e. find the upper tail area using a cutoff of 5.1.Guided Practice 0.15 Use the table below and a calculator to find the X^{2} statistic, df, and p-value for chi-square goodness of fit test. ${ }^{13}$| Days | 1 | 2 | 3 | 4 | 5 | 6 | $7+$ | Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Observed values | 1532 | 760 | 338 | 194 | 74 | 33 | 17 | 2948 |
| Expected values | 1569 | 734 | 343 | 161 | 75 | 35 | 31 | 2948 |

Table 2: Distribution of the waiting time until a positive trading day. The expected counts are based on a geometric model.Guided Practice 0.16 Use the table below and a calculator to find the expected values and the X^{2} statistic, $d f$, and p -value for the corresponding chi-square test. ${ }^{14}$

		Congress		
	Obama	Democrats	Republicans	Total
Approve	842	736	541	2119
Disapprove	616	646	842	2104
Total	1458	1382	1383	4223

Table 3: Pew Research poll results of a March 2012 poll.

[^4]
Inference for numerical data

1-sample t-test and t-interval

은 TI-83/84: 1-sample t-test
Use STAT, TESTS, T-Test.

1. Choose Stat.
2. Right arrow to TESTS.
3. Down arrow and choose $2: T$-Test.
4. Choose Data if you have all the data or Stats if you have the mean and standard deviation.
5. Let μ_{0} be the null or hypothesized value of μ.

- If you choose Data, let List be L1 or the list in which you entered your data (don't forget to enter the data!) and let Freq be 1.
- If you choose Stats, enter the mean, SD, and sample size.

6. Choose $\neq,<$, or $>$ to correspond to H_{A}.
7. Choose Calculate and hit ENTER, which returns:
t t statistic $S x$ the sample standard deviation
p p-value $\quad n \quad$ the sample size
$\overline{\mathrm{x}}$ the sample mean

O०. TI-83/84: 1-sample t-interval
Use STAT, TESTS, TInterval.

1. Choose STAT.
2. Right arrow to TESTS.
3. Down arrow and choose 8:TInterval.
4. Choose Data if you have all the data or Stats if you have the mean and standard deviation.

- If you choose Data, let List be L1 or the list in which you entered your data (don't forget to enter the data!) and let Freq be 1.
- If you choose Stats, enter the mean, SD , and sample size.

5. Let C-Level be the desired confidence level.
6. Choose Calculate and hit ENTER, which returns:
(__,__) the confidence interval
$\overline{\mathrm{x}} \quad$ the sample mean
Sx the sample SD
n the sample size

Practice exercises

Guided Practice 0.17 The average time for all runners who finished the Cherry Blossom Run in 2006 was 93.29 minutes. In 2012, the average time for 100 randomly selected participants was 95.61 , with a standard deviation of 15.78 minutes. Use a calculator to find the T statistic and p -value for the appropriate test to see if the average time for the participants in 2012 is different than it was in $2006 .{ }^{15}$Guided Practice 0.18 Use a calculator to find a 95% confidence interval for the average run time for participants in the 2012 Cherry Blossum Run using the sample data: $\bar{x}=95.61$ minutes, $s=15.78$ minutes, and the sample size was $100 .{ }^{16}$[^5]
Matched pairs t-test and t-interval

TI-83/84: matched pairs t-test
Use STAT, TESTS, T-Test.

1. Choose STAT.
2. Right arrow to TESTS.
3. Down arrow and choose $2: T$-Test.
4. Choose Data if you have all the data or Stats if you have the mean and standard deviation.
5. Let μ_{0} be the null or hypothesized value of $\mu_{d i f f}$.

- If you choose Data, let List be L3 or the list in which you entered the differences (don't forget to enter the differences!) and let Freq be 1.
- If you choose Stats, enter the mean, SD, and sample size of the differences.

6. Choose $\neq,<$, or $>$ to correspond to H_{A}.
7. Choose Calculate and hit ENTER, which returns:
t t statistic
p p-value
$\overline{\mathrm{x}} \quad$ the sample mean of the differences
Sx the sample SD of the differences
n the sample size of the differences

TI-83/84: matched pairs t-interval
Use STAT, TESTS, TInterval.

1. Choose STAT.
2. Right arrow to TESTS.
3. Down arrow and choose 8:TInterval.
4. Choose Data if you have all the data or Stats if you have the mean and standard deviation.

- If you choose Data, let List be L3 or the list in which you entered the differences (don't forget to enter the differences!) and let Freq be 1.
- If you choose Stats, enter the mean, SD, and sample size of the differences.

5. Let C -Level be the desired confidence level.
6. Choose Calculate and hit ENTER, which returns:
(\quad, \quad) the confidence interval for the mean of the differences
$\overline{\mathrm{x}} \quad$ - the sample mean of the differences
Sx the sample SD of the differences
$n \quad$ the number of differences in the sample

Practice exercises

Guided Practice 0.19 Use the first 7 values of the data set produced below and calculate the T score and p-value to test whether, on average, Amazon's textbook price is cheaper that UCLA's price. ${ }^{17}$Guided Practice 0.20 Use the same table below to calculate a 95% confidence interval for the average difference in textbook price between Amazon and UCLA. ${ }^{18}$| | dept | ucla | amazon |
| :--- | :--- | :--- | :--- |
| 1 | Am Ind | 27.67 | 27.95 |
| 2 | Anthro | 40.59 | 31.14 |
| 3 | Anthro | 31.68 | 32.00 |
| 4 | Anthro | 16.00 | 11.52 |
| 5 | Art His | 18.95 | 14.21 |
| 6 | Art His | 14.95 | 10.17 |
| 7 | Asia Am | 24.7 | 20.06 |

Table 4: A partial table of the textbooks data.

[^6]
2 -sample t-test and t-interval

은 TI-83/84: 2-sample t-test
[h] Use STAT, TESTS, 2-SampTTest.

1. Choose Stat.
2. Right arrow to TESTS.
3. Choose 4:2-SampTTest.
4. Choose Data if you have all the data or Stats if you have the means and standard deviations.

- If you choose Data, let List1 be L1 or the list that contains sample 1 and let List2 be L2 or the list that contains sample 2 (don't forget to enter the data!). Let Freq1 and Freq2 be 1.
- If you choose Stats, enter the mean, SD , and sample size for sample 1 and for sample 2

5. Choose $\neq,<$, or $>$ to correspond to H_{A}.
6. Let Pooled be No.
7. Choose Calculate and hit ENTER, which returns:

t	t statistic	Sx 1	SD of sample 1
p	p-value	Sx2	SD of sample 2
df	degrees of freedom	n 1	size of sample 1
$\overline{\mathrm{X}}_{1}$	mean of sample 1	n 2	size of sample 2
$\overline{\mathrm{X}}_{2}$	mean of sample 2		

O०. TI-83/84: 2-sample t-interval
Use STAT, TESTS, 2-SampTInt.

1. Choose STAT.
2. Right arrow to TESTS.
3. Down arrow and choose $0: 2$-SampTTInt.
4. Choose Data if you have all the data or Stats if you have the means and standard deviations.

- If you choose Data, let List1 be L1 or the list that contains sample 1 and let List2 be L2 or the list that contains sample 2 (don't forget to enter the data!). Let Freq1 and Freq2 be 1.
- If you choose Stats, enter the mean, SD , and sample size for sample 1 and for sample 2.

5. Let C-Level be the desired confidence level and let Pooled be No.
6. Choose Calculate and hit ENTER, which returns:

Practice exercises

\odot
Guided Practice 0.21 Use the data from the ESC experiment shown in Table 5 to find the appropriate degrees of freedom and construct a 90% confidence interval. ${ }^{19}$Guided Practice 0.22 Use the data from this example to find an appropriate statistic, degrees of freedom, and p-value for a two-sided hypothesis test. ${ }^{20}$

	n	\bar{x}	s
ESCs	9	3.50	5.17
control	9	-4.33	2.76

Table 5: Summary statistics for the embryonic stem cell data set.

[^7]
Introduction to linear regression

Finding b_{0}, b_{1}, R^{2}, and r for a linear model

○○ TI-84: finding b_{0}, b_{1}, R^{2}, and r for a linear model

Use STAT, CALC, LinReg (a + bx).

1. Choose Stat.
2. Right arrow to CALC.
3. Down arrow and choose 8:LinReg $(a+b x)$.

- Caution: choosing $4: \operatorname{LinReg}(\mathrm{ax}+\mathrm{b})$ will reverse a and b.

4. Let Xlist be L1 and Ylist be L2 (don't forget to enter the x and y values in L1 and L2 before doing this calculation).
5. Leave FreqList blank.
6. Leave Store RegEQ blank.
7. Choose Calculate and hit ENTER, which returns:
a $\quad b_{0}$, the y -intercept of the best fit line
b $\quad b_{1}$, the slope of the best fit line
$r^{2} \quad R^{2}$, the explained variance
$r \quad r$, the correlation coefficient
TI-83: Do steps 1-3, then enter the x list and y list separated by a comma, e.g. LinReg ($\mathrm{a}+\mathrm{bx}$) L1, L2, then hit Enter.

What to do if r^{2} and r do not show up on a TI-83/84

TIP: What to do if r^{2} and r do not show up on a TI-83/84 If r^{2} and r do now show up when doing STAT, CALC, LinReg, the diagnostics must be turned on. This only needs to be once and the diagnostics will remain on.

1. Hit 2ND 0 (i.e. CATALOG).
2. Scroll down until the arrow points at DiagnosticOn.
3. Hit ENTER and ENTER again. The screen should now say:
```
DiagnosticOn
```

```
Done
```


What to do if a TI-83/84 returns: ERR: DIM MISMATCH

TIP: What to do if a TI-83/84 returns: ERR: DIM MISMATCH
This error means that the lists, generally L1 and L2, do not have the same length.

1. Choose 1: Quit.
2. Choose STAT, Edit and make sure that the lists have the same number of entries.

Practice exercises

	fed_spend	poverty
1	6.07	10.6
2	6.14	12.2
3	8.75	25.0
4	7.12	12.6
5	5.13	13.4
6	8.71	5.6
7	6.70	7.9

[^8]
Linear regression t-test and t-interval

TI-83/84: Linear regression t-test on β_{1}

Use STAT, TESTS, LinRegTTest.

1. Choose Stat.
2. Right arrow to TESTS.
3. Down arrow and choose F:LinRegTest. (On TI-83 it is E:LinRegTTest).
4. Let Xlist be L1 and Ylist be L2. (Don't forget to enter the x and y values in L1 and L2 before doing this test.)
5. Let Freq be 1.
6. Choose $\neq,<$, or $>$ to correspond to H_{A}.
7. Leave RegEQ blank.
8. Choose Calculate and hit ENTER, which returns:

t	t statistic	b	b_{1}, slope of the line
p	p -value	s	st. dev. of the residuals
df	degrees of freedom for the test	r^{2}	R^{2}, explained variance
a	b_{0}, y-intercept of the line	r	r, correlation coefficient

$\stackrel{\circ}{\circ}$. TI-84: t-interval for β_{1}
Use STAT, TESTS, LinRegTInt.

1. Choose Stat.
2. Right arrow to TESTS.
3. Down arrow and choose G: LinRegTest.

- This test is not built into the TI-83.

4. Let Xlist be L1 and Ylist be L2. (Don't forget to enter the x and y values in L1 and L2 before doing this interval.)
5. Let Freq be 1.
6. Enter the desired confidence level.
7. Leave RegEQ blank.
8. Choose Calculate and hit ENTER, which returns:
\qquad , __) the confidence interval
$\mathrm{b} \quad b_{1}$, the slope of best fit line of the sample data
df degrees of freedom associated with this confidence interval
s standard deviation of the residuals
a $\quad b_{0}$, the y-intercept of the best fit line of the sample data
$r^{2} \quad R^{2}$, the explained variance
$r \quad r$, the correlation coefficient

[^0]: ${ }^{1}$ Use $n=5$ and $k=3$ to get 10 .
 ${ }^{2}$ Use $n=5, p=4 / 13$, and $x(k)=3$ to get 0.1396 .
 ${ }^{3}$ Use $n=5, p=4 / 13$, and $x=3$ to get 0.9662 .

[^1]: ${ }^{4}$ normalcdf gives the result without drawing the graph. To draw the graph, do 2nd VARS, DRAW, 1:ShadeNorm. However, beware of errors caused by other plots that might interfere with this plot.
 ${ }^{5}$ Now we want to shade to the right. Therefore our lower bound will be 2 and the upper bound will be +5 (or a number bigger than 5) to get $P(Z>2)=0.023$.
 ${ }^{6}$ Here we are given both the lower and the upper bound. Lower bound is -1.5 and upper bound is 1.5 . The area under the normal curve between -1.5 and $1.5=P(-1.5<Z<1.5)=0.866$.
 ${ }^{7}$ If 20% of the area is the right, then 80% of the area is to the left. Letting area be 0.80 , we get $Z=0.841$.

[^2]: ${ }^{8}$ p-value $=0.19$
 ${ }^{9}$ The interval is $(0.414,0.471)=(41.4 \%, 47.1 \%)$.

[^3]: ${ }^{10}$ Correctly going through the calculator steps should lead to an interval of ($0.01484,0.11926$). There is no value given for the pooled proportion since we do not pool for confidence intervals.
 ${ }^{11}$ Correctly going through the calculator steps should lead to a solution with $Z=2.55$ and p -value $=$ 0.0055 . The pooled proportion is $\hat{p}=0.342$.

[^4]: ${ }^{12}$ Using $d f=5$ and a lower bound of 5.1 for the tail, the upper tail area is 0.4038 .
 ${ }^{13}$ You should find that $X^{2}=15.08, d f=6$, and p-value $=0.0196$.
 ${ }^{14}$ First create a 2×3 matrix ith the data. The final summaries should be $X^{2}=106.4$, p-value $=$ $8.06 \times 10^{-24} \approx 0$, and $d f=2$. Below is the matrix of expected values:

 | | Obama | Congr. Dem. | Congr. Rep. |
 | :--- | :---: | :---: | :---: |
 | Approve | 731.59 | 693.45 | 693.96 |
 | Disapprove | 726.41 | 688.55 | 689.04 |

[^5]: ${ }^{15}$ Let μ_{0} be 93.29. Choose \neq to correspond to $H_{A} . T=1.47, d f=99$, and p-value $=0.14$. ${ }^{16}$ The interval is $(92.52,98.70)$.

[^6]: ${ }^{17}$ Create a list of the differences, and use the data or list option to perform the test. Let μ_{0} be 0 , and select the appropriate list. Freq should be 1, and the test sidedness should be $>$. $T=3.076$ and p -value $=0.0109$.
 ${ }^{18}$ Choose a C-Level of 0.95 , and the final result should be (0.80354, 7.0507).

[^7]: ${ }^{19}$ The interval is $(4.3543,11.307)$ with $d f=12.2$.
 ${ }^{20} T=4.008, d f=12.2$, and $\mathrm{p}-$ value $=0.00168$.

[^8]: ${ }^{21} a=5.136$ and $b=1.056$, therefore $\hat{y}=5.136+1.056 x$.

